11987 - O parasitóide *Ocencyrtus sp.* (Hymenoptera: Encyrtidae) no controle natural de *Papilio thoas brasiliensis* (Lepidoptera: Papilionidae).

The parasitoid <u>Ooencyrtus</u> sp. (Hymenoptera: Encyrtidae) in the natural control of <u>Papilio</u> thoas <u>brasiliensis</u> (Lepidoptera: Papilionidae).

GONÇALVES, Niedja Goyanna Gomes¹; GAUDENCIO, Samuel Fabiano da Silva.²

1. Universidade Federal Ceará, <u>niedja@ufc.br;</u> 2. Universidade Federal Ceará, <u>samuelgaudencio@gmail.com;</u>

Resumo: O avanço da população humana gerou grande aumento na demanda de alimentos. "Como nutrir um número cada vez maior de pessoas conservando ao máximo o meio ambiente"? As técnicas agrícolas têm garantido o aumento na produção. Mas, têm provocado grande degradação do meio ambiente por compactação dos solos, eutrofização de rios e poluição de lençóis freáticos. A Agroecologia visa, simultaneamente, as necessidades de preservação ambiental e a promoção socioeconômica dos pequenos agricultores. Assim, o controle biológico é uma das ferramentas uteis em Agroecologia. Das pragas que atacam Citrus, destaca-se a desfolhadora, *Papilio thoas brasiliensis* (Roth. & Jordan 1907). No Brasil, a área plantada com frutas cítricas está ao redor de um milhão de hectares e a produção supera 19 milhões de toneladas, a maior no mundo há alguns anos Objetivando avaliar o papel do parasitóide *Ooencyrtus sp.* na população da lagarta desfolhadora dos citros, *P. thoas brasiliensis* foi desenvolvido este trabalho. Palavras-Chave: Educação Ambiental, Agroecologia, Controle Biológico, Parasitoide, Pragas.

Abstract:_The advancement of the human population has generated huge increase in food demand. "How to nurture a growing number of people saving the environment the most?" The agricultural techniques are guaranteed the increase in production. But it has caused significant environmental degradation by soil compaction, eutrophication of rivers and groundwater pollution. Agro-ecology seeks both the needs of environmental protection and socioeconomic promotion of small farmers. Thus, biological control is one of the tools useful in Agro-ecology. Citrus pests that attack, there is a defoliator, *Papilio thoas brasiliensis* (Roth. & Jordan 1907). In Brazil, the area planted with citrus is around one million hectares and the production exceeds 19 million tons, the highest in the world for several years order to evaluate the role of parasitoid *Ooencyrtus sp.* in the population of caterpillars defoliating citrus, *P. thoas brasiliensis* was developed this work.

Key words: Environmental Education, Agro-ecology, Biological Control, Parasitoid, Pest.

Introdução

O elevado crescimento da população humana deve-se, principalmente, a redução da taxa de mortalidade, decorrente tanto dos avanços agrícolas e tecnológicos, que aumentam a produção de alimentos, como dos progressos médicos e sanitários, que prolongam a expectativa de vida (AMABIS, 2001). Tal fato gerou uma maior elevação na demanda de alimentos e, consequentemente, um aumento na oferta que se tornou possível com a modernização da agricultura. Destarte, as indústrias químicas que antes abasteciam a indústria bélica norte-americana começaram a produzir e incentivar o uso de agrotóxicos: herbicidas, fungicidas, inseticidas e fertilizantes químicos na produção agrícola para eliminar fungos, insetos e ervas daninhas (ROSA, 1998). Segundo Khatounian (2001), os

aumentos de produção conseguidos com os fertilizantes minerais foram tão grandes, que Justus Von Liebig, considerado o pai da química agrícola, chegou a declarar que em pouco tempo iriam desenvolver algo mais nutritivo e eficaz para os bebês que o leite materno. Não se pode esquecer, também, a construção e adoção de um maquinário pesado a exemplo de tratores, máquinas de colheitas etc., para serem usados nas diversas etapas da produção agrícola, ou seja, do plantio até a colheita, finalizando, assim, o ciclo de inovações tecnológicas provido pela Revolução Verde (ANDRADES, 2007). Entretanto, as mesmas técnicas têm proporcionado uma grande degradação do meio ambiente quando provocam: a compactação dos solos, devido ao uso intensivo de maquinário pesado; a eutrofização de rios, causado pelo acumulo de fertilizantes químicos carreados por irrigações equivocadas, comprometendo a sobrevivência da biota destes ecossistemas; e a poluição de lençóis freáticos, gerada por irrigações exageradas seguidas do uso intensivo de agroquímicos, agravando o problema da escassez d'água. O uso incorreto de praguicidas é um dos problemas mais preocupantes pela propriedade que alguns destes têm em se concentrar nos níveis tróficos e se dispersar na teia alimentar. Conforme Mendes (2009), o resíduo do DDT é encontrado em tecidos de animais, desde pinguins na Antártica até crianças na Tailândia, em áreas onde o produto, jamais, foi usado. Neste contexto, o principal questionamento que se faz, no momento atual, é: - Como aumentar a produção de alimentos e como nutrir um número cada vez maior de pessoas conservando ao máximo o meio ambiente?

Veiga (2006) diz: Práticas que promovam uma agricultura sustentável devem manter, em longo prazo, tanto os recursos naturais quanto a produtividade agropecuária. Consoante Khatounian (2001), a Agroecologia procura atender, simultaneamente, às necessidades de preservação ambiental e a promoção socioeconômica dos pequenos agricultores. Dentro deste enfoque pode-se, portanto, lançar mão de um método de controle natural de insetos, nesse caso, insetos não desejáveis, isto é, o controle biológico, uma das ferramentas utilizadas em Agroecologia que se caracteriza pela utilização de qualquer ser vivo: fungos, vírus, bactérias, insetos predadores, etc., com o intuito do controle de pragas (BASTOS, 1988). É, por conseguinte, o controle biológico um fenômeno natural que consiste na regulação do numero de plantas e animais por inimigos naturais, que constituem os agentes de mortalidade biótica. No começo do século XVIII em algumas localidades da Europa foram feitas transferências de insetos predadores para combater surtos de insetos pragas. Paralelamente, os naturalistas europeus ressaltaram a importância de himenópteros que parasitavam lagartas. Nos primórdios do século XIX surgiu a ideia de que cada inseto fitófago possuía seu próprio complexo de parasitóides e predadores. (GALLO, 2002). A maioria dos parasitóides que matam seus hospedeiros vive livre e independente quando adultos; e são letais e dependentes apenas em seus estágios juvenis (MDA, 2007).

No controle biológico natural da lagarta Papilio thoas brasiliensis (Roth. & Jordan 1907), destacam-se, entre os predadores, os himenópteros Vespidae (LOLATO & MORAIS 1997 apud CUPERTINO, 2010). Gallo et. al., (1988) mencionam que dentre as lagartas (Lepidóptera) que atacam Citrus sp., destacam-se as que promovem a desfolha, como a Papilio thoas brasiliensis (Roth. & Jordan 1907), considerada uma das mais importantes pragas desta cultura, ocorrendo naturalmente, desde o sul do Texas até o sul do Brasil (http://www.butterfliesandmoths.org/species/Papilio-thoas). No Brasil, a área plantada com frutas cítricas está ao redor de um milhão de hectares e a produção supera 19 milhões de toneladas, a maior no mundo há alguns anos (AZEVEDO, 2007).

Objetivando avaliar a influência do micro-himenóptera parasitóide *Ooencyrtus sp.* na população da lagarta desfolhadora dos citros, *P. thoas brasiliensis* foi desenvolvido este trabalho.

Metodologia

O experimento foi realizado, de fevereiro a maio de 2011, integradamente no Horto Didático e no Laboratório do Núcleo de Ensino e Pesquisas Entomológicas - NEPE, ambos do Departamento de Fitotecnia do Centro de Ciências Agrárias da Universidade Federal do Ceara, em Fortaleza, Ceará, Brasil. Plantas hospedeiras do referido inseto foram cultivadas na área experimental, sem uso de agroquímicos, sendo utilizado, como adubo, apenas fertilizantes orgânicos, a exemplo de restos vegetais e excrementos animais (caprinos, ovinos), com o intuito da criação e estudo de espécimes da entomofauna própria daquele agroecossistema. Naturalmente, os insetos adultos de P. thoas brasiliensis efetuaram suas posturas, cujos ovos, em número de 70, posteriormente. levados ao Laboratório do NEPE. Antes, procederam-se inspeções diretas para verificar a ocorrência de inimigos naturais. Em um dado momento, observou-se, em várias folhas de Citrus sp, minúsculos insetos próximos e/ou sobrevoando os ovos do referido lepidóptero. Foram deixadas, então, algumas folhas com ovos para observação in loco. Àquelas, no laboratório, acondicionadas em placas de Petri (9,0 cm de diâmetro e 1,5 cm de altura), temperatura de 25,0 ± 5,0° C, umidade relativa de 60,0 ± 10,0% e um fotoperíodo de 12 horas, foram observadas duas vezes ao dia para se testemunhar quando da emergência dos adultos parasitóides. Para a identificação dos espécimes utilizaram-se além dos instrumentos entomológicos, soluções alcoólicas, lupa estereoscópica e literatura pertinente.

Resultados e Discussão

Ao proceder-se o acompanhamento sistemático das diversas posturas levadas ao Laboratório do NEPE e daquelas, dantes deixadas na área experimental, percebeu-se que os ovos da *P. thoas brasiliensis*, em seu estado natural, possuíam forma globo-ovalada e cor amarelo claro, logo após a postura, passando à cor alaranjada, próxima à eclosão das lagartas. Quando parasitados, apresentavam uma cor amarela que ia se tornando, paulatinamente, escura até a eclosão do parasitóide (Fig.1).

Figura I: Desenvolvimento do parasitóide *Ooencyrtus sp.*, em ovos de P. *thoas brasiliensis*. Em ordem da esquerda para direita: ovos da hospedeira; eclosão do parasitóide; e himenóptero adulto.

Computamos, assim, um aumento gradual de ovos parasitados, à medida que estes foram analisados. Dos 70 ovos levados ao laboratório, 58 apresentavam sinais de parasitismo, i.é., ponto escuro na superfície. Confirmou-se, então, que 82,85 % dos ovos encon-

travam-se parasitados, pois, a partir daí, não se observou nenhuma eclosão de lagarta daqueles ovos. Constatou-se, ainda, uma queda gradativa na população da lagarta, na área experimental, alcançando um nível de 100% de controle da lagarta pelo parasitoide.

O surgimento das vespas era, portanto, o problema para a população de lepidópteros, porém, uma solução para o controle populacional dessa espécie-praga. Os adultos do himenóptero eclodiram após 12 dias de parasitismo. Esses eram de cor escura: tórax preto e abdômen marrom escuro, com 1,5 a 2,0 mm de comprimento e 1,0 mm de largura. O referido parasita, neste primeiro ensaio, mostrou ter um excelente potencial para uso como agente de controle biológico, eliminando a praga desfolhadora do *Citrus* sp, *P. thoas brasiliensis* com eficiência surpreendente. Outros estudos estão sendo conduzidos para avaliar o potencial controlador de *Ooencyrtus* sp. em espécies distintas de lepidópteros de interesse econômico.

Agradecimentos

Pró-Reitoria de Extensão e Departamento de Fitotecnia da Universidade Federal do Ceará.

Bibliografia Citada

AMABIS, J.M & MARTHO, G.R. Humanidade e o ambiente. In: **Conceitos de biologia.** São Paulo: Moderna, 2001. Cap. 8, p. 232-256.

ANDRADES, T.O & GANIMI, R.N. Revolução **verde e a apropriação capitalista.** CES/JF - Revista do Centro de Ensino Superior de Juiz de Fora, Juiz de Fora, v. 21, p. 43-56, 2007.

AZEVEDO, C. L. L. Sistema de produção de citros para o nordeste - **Revista Embrapa versão eletrônica.** Disponível em: http://sistemasdeproducao.cnptia.embrapa.br/FontesHTML/Citros/CitrosNordeste/index.htm >. Acesso em: 09 set. 2011.

BASTOS, J.A.M. **Principais Pragas das culturas e seus Controles.** 3.ed. São Paulo: Livraria Nobel S.A., 1978.

BORBOLETAS E MARIPOSAS DA AMÉRICA DO NORTE * < http://www.butterfliesandmoths.org/species/Papilio-thoas Acesso em 10/08/11.

CUPERTINO, S.D.M & MARA, M.R. Avaliação do efeito deterrente de extratos vegetais sobre *Papilio thoas brasiliensis* (Lepidóptera: Papilionidae) Rothschild & Jordan, 1906. **Journal of the Selva Andina Research Society,** Los Andes, Bolivia, p. 50-56, 2010.

GALLO, D. (in memoriam) et al. **Entomologia Agrícola.** Piracicaba: FEALQ, 2002. 920p.

GALLO, D. et al. **Manual de Entomologia Agrícola.** São Paulo: Agronômica Ceres, 1978. 532p.

KHATOUNIAN, C.A. **A reconstrução ecológica da agricultura.** Botucatu: Agroecológica, 2001. *brasiliensis* (Roth. & Jordan 1907),

LOLATO, A. MORAIS, J. C. Ocorrência da "lagarta minadora das folhas de citrus"

Phyllocnistiss citrella Stainton, 1856 (Lepidóptera: Gracilariidae) em: lavras. Sul de Minas Gerais. **Cienc Agrotec** Lavras. A997;21:521-522.

MENDES, J.C. A Contaminação Ambiental Da Cidade Dos Meninos, Duque De Caxias – RJ: Análise Diante Da Contribuição Dos Complexos Patogênicos De Max Sorre. In: ENCUENTRO DE GEÓGRAFOS DE AMÉRICA LATINA, 12., 2009, Montevideo, Uruguay. **Anais eletrônicos...** EGAL, 2009. Disponível em: http://egal2009.easyplanners.info/area07/7090_CARLOS_jasson.pdf>. Acesso em 02 set. 2011.

MINISTÉRIO DO DESENVOLVIMENTO AGRÁRIO. **Controle Biológico De Pragas Através Do Manejo De Agroecossistemas**. Brasília: MDA, 2007. 31p.

ROSA, Antônio Vitor. Agricultura e meio Ambiente. São Paulo: Atual, 1998.

VEIGA, José Eli da. Agricultura. In: TRIGUEIRO, André (Coord.). **Meio ambiente no século 21:** 21 especialistas falam da questão ambiental nas suas áreas de conhecimento. Rio de Janeiro: Sextante, 2003. p. 199-215.